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Heterometallic {CryM} rings

Even member AFM molecular rings

Crg

Quite common for transition metal ions, like
Feg, Cuyg, Crg and Mny,.

Attracting interest ==> Provide good
opportunities for observing quantum
tunneling.

0 [Cr3F8(02CCMe3)16]




Molecular magnetic rings
[o] lele}

Heterometallic {CryM} rings

Even member AFM molecular rings

Quite common for transition metal ions, like
Feg, Cuyg, Crg and Mn,.

Attracting interest ==> Provide good
opportunities for observing quantum
tunneling.

@ [{nBu,NH,}{Cr;Fe}FgPivic}]
@ (EtzNH,)[Cr;CuFgPivye]

© (R:NH,)[Cr7NiFgPivyg]

© with Pivig = (0,CCMes)16
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Heterometallic {CryM} rings

Why substituted by metal ion ?

© To create an excess spin;

@ Engineer its level structure;

© Ground state degeneracy;
© Spin frustration.
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Heterometallic {CryM} rings

Schematic representation of Cr g and Cr;M
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Theoretical model

Hamiltonian and Observables

@ Hamiltonian of the Helsenberg Model

H=23 3 25| Si+14235(S1-52+51-58)+0/8B > 82(u),
Dim(H) =[2s (1) + 1] % [25(2) + 1] % - - -« [2S (N) + 1]
Sz(U) My, ... ,My,...,My) =My [Mg,....,My,...,My)

00
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Theoretical model

Hamiltonian and Observables

© Hamiltonian of the Heisenberg-Model

A =231 5N,§8 ., 14+235(51-S2+81-Sn)+9usB SN &, (u),
Q@ DIm(H)=1[2s(1)+1] *[2s(2) + 1] *---* [25 (N) + 1]
© s:(u) [mg,....my,....my) =My [Mg,....,My,...,My)
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Theoretical model

Hamiltonian and Observables

© Hamiltonian of the Heisenberg-Model

A =231 5N,§8 ., 14+235(51-S2+81-Sn)+9usB SN &, (u),
Q@ Dim(H)=1[2s(1) +1] x[2s(2) + 1] *---* [2s (N) + 1]
© s:(u) [mg,....my,....my) =My [Mg,....,My,...,My)

Decomposition into mutually orthogonal subspaces

— H =@  H(S,M)
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Theoretical model

Observable and operator

@ Use mirror symmetry around the doping ion:
TN'V' | Mg, My, M3, My, M5, Mg, M7, Mg ) =
| Mg, Mg, M7, Mg, M5, My, M3, My )

@ The eigenvalues of Ty are &+ 1.
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Theoretical model

Observable and operator

@ Use mirror symmetry around the doping ion:
Tm [ M1, Mz, M3, My, Ms, Mg, M7, Mg ) =

| Mg, Mg, M7, Mg, M5, My, M3, My )
@ The eigenvalues of T, are + 1.

Decomposition of subspaces H(S,M)

———> H(S,M) — —— > H(S,M, k)
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Energy spectrum

Spectrum of Heterometallic Cr
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Low-field susceptibility

Susceptibility
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Low-field susceptibility

Susceptibility
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Exchange interaction

© ZnCry:J; =84KandJ, =0K
Q CuCry: J,=J; =84K
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Low-field susceptibility

Susceptibility
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Low-field susceptibility

Susceptibility
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@ FeCry: red solid line J; = J;/2 and J; = 8.47 K
Q NiCry: J, =J; =8.25K
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e Quantum level crossing effects
@ Level crossing in heterometallic {Cr;M} ring
@ Spin-lattice relaxation rates T;*
@ Electron-nucleus interactions
° Tl‘1 in Crg and heterometallic {Cr;M} ring
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Level crossing in heterometallic ~ {Cr7M} ring

Energies levelsvs Bin Cr g

Energies levels vs magnetic field for the lower three spins
values (S=0, 1 and 2) in Crg molecular ring;
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Level crossing in heterometallic ~ {Cr7M} ring

Energies levels vs B in FeCr 7

Energies levels vs magnetic field for the lower three spins
values (S=1/2, 3/2 and 5/2) in FeCr; molecular ring;
E (K)
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Level crossing in heterometallic ~ {Cr7M} ring

Magnetic susceptibility as a function of B for FeCr

— M@B)andT=0K

— x(®)and T=0.15K
4 FeCr7 — x®)andT=0.1K ]

J,=1/2J, and J,=8.47 K
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Spin-lattice relaxation rates T |~

Spin-lattice relaxation rates T |

1

The relaxation time T, represents the
"lifetime” of the first order rate process that
S=3/2 returns the magnetization to the Boltzmann

equilibrium along the +Z axis.

o Tl_1 depends highly on the type of
nuclei (for | = 1/2 and low
magnetogyric ratio usually yields long
T1, | > 1/2 have very short relaxation
time);

@ T;! can be measured by various
techniques: Inversion Recovery Fourier
Transform (PSFT), Progressive
Saturation (PSFT).
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Electron-nucleus interactions

Electron-Nucleus Interactions

Electron-Nucleus Interactions
6o b
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Electron-Nucleus Interactions

Electron-Nucleus Interactions
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Electron-nucleus interactions

Electron-Nucleus Interactions

Electron-Nucleus Interactions
?\/\(ﬁ—??

7 ? ;S ?yl
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Electron-nucleus interactions

Electron-Nucleus Interactions

Dipolar coupling between nuclear spin | and electron spin S;:
H=F2? +FfI-+F 1t
N
: , 2 ez e N
With : F* = 3 (£Do(i)S* (i) + D4a())S* (i) + D_1()S (1))
i=1
N1
F* = (5 Do())S*() + Dxa(i)S* (1) + Dx2(i)S7(1))
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Electron-nucleus interactions

Electron-Nucleus Interactions

Dipolar coupling between nuclear spin | and electron spin S;:
H=F2? +FfI-+F 1t

N
With - % = 3" (2D0(i)$7(1) + D11()$* (1) + D)~ (1))
i=1

P = Z(%lDomgi(i) +D1(1)S° () + D=2(1)S7(7))

Do(i) = i(3cos b — 1),
D.1(i) = «j sin6,cosb; exp(Fipi),

D42 = 1/2q; sin? 6, exp(F2iyi)

Qi = 372“‘775 are the geometrical factors of the dipolar interaction,
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Electron-nucleus interactions

Electron-Nucleus Interactions

Dipolar coupling between nuclear spin | and electron spin S;:
H=F2? +FfI-+F 1t
N

With - % = 3" (2D0(i)$7(1) + D11()$* (1) + D)~ (1))
i=1

S Z(%lDomgi(i) +D=1(1)S* (1) + D=2(1)S7(1)
i=1

@ 0 and ¢; are the polar coordinates of the vector r; describing the
relative positions of the two spins;

@ In the case of an isotropic g factorp=0 and «;=1;
@ s and vy the gyromagnetic rations.
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Electron-nucleus interactions
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Spin-lattice relaxation rates T |

NMR: Correlation of the individual spin S;:
+oo

Ti =(1+ exp(—th/kBT))/ < FH(t)F~(0) > e(Hont) gt
1 —0oQ

1 CEpt ~ At~
<FT*(t)F(0) >= > d < pulel e T E |y, > e En
I

1 C(Ep—Eu)t ~ ~
— 2> e T e <y >< Il >
H,

With Fourier transform:

1 _pE - . 400 7i(EU—EH)t+int
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Electron-nucleus interactions

1

Spin-lattice relaxation rates T |

1
T1

— (1 + exp(—Hin ke T)) o Ze‘ﬁEu < PulF e, >

E, —E,
)

< |F by > e (wn —
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Electron-nucleus interactions

Spin-lattice relaxation rates T |

1

— (1 + exp(—Hin ke T)) o Ze‘ﬁEu < PulF e, >

S\H

E, —E,
h

wn =B, W =gn B

~Yn: gyromagnetic ratio of the necleus;

0 = smeared-function, i.e Gaussian or Lorentzian, ¢ = decay width.
on: Lande factor of nuclear = 5.5854;

pn: nuclear magneton = 5.0508 10-27 A m?;

T = 0.0003658 KIT

< |F by > e (wn —
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Electron-nucleus interactions

Spin-lattice relaxation rates T 1+

— (1 + exp(—Hin ke T)) o Ze‘ﬁEu < PulF e, >

S\H

~ E, —E
< Y|F 7|y > 0c(wn — T")

E,-E,=E,(B=0)-E,B =0)+geusB(M, —M,,)
with:
Je: Lande factor of electron;

ug: electron magneton: 9,274 10724 A m?;
ﬁ—: = 0.67 KIT
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Trl in Crg and heterometallic {CryM} ring

T, in {Cr;Fe} molecular ring

Contribution of the lowest M-subspaces with: 0 <M <5
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Trl in Crg and heterometallic {CryM} ring

T, in {NiCr;} molecular ring

2 3
B (Tesla /1)
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Trl in Crg and heterometallic {CryM} ring

T, in {CuCr;} molecular ring

\ I / : ! |

2 3
B (Tesla/lll)
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Trl in Crg and heterometallic {CryM} ring

T, in {ZnCr;} molecular ring

A
S
T T T I1F
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Trl in Crg and heterometallic {CryM} ring

T, in Crg and heterometallic {Cr;M} ring

—

i — CrS(S =3/2) i

4l — FesClisan | -

L Cu (s 12 23|

— Nig_\Clysoam)

3 -
j

4 5

2 3
B(Tesla/lJl)



Quantum level crossing effects
00000e

Trl in Crg and heterometallic {CryM} ring

T, in {Crg} molecular ring
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Summary

Summary

@ There is no big influence for the exchange parameters in
the case of substitution of one metals ions in the Crg, just
in the case of Fe.

@ Strong enhancement of T; ' is observed at magnetic field
values where steps are observed in the magnetization at
low temperature: resonant relaxation.

@ The peaks observed for the compounds in which one Cr'"
ions has been replaced by a Cu, Ni (S; < Sc,) are higher
than the peaks of the Crg ring ==> long relaxation time.

@ Short relaxation time in the case FeCr; comparing to the
Crg at low temperature region.
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