
Performance Optimization of Matrix-free Finite-Element
Algorithms within deal.II

Martin Kronbichler
Technical University of Munich

Garching, Germany
kronbichler@lnm.mw.tum.de

Karl Ljungkvist
Uppsala University
Uppsala, Sweden

Momme Allalen
Leibniz Computing Centre

Garching, Germany

Martin Ohlerich
Leibniz Computing Centre

Garching, Germany

Igor Pasichnyk
IBM Germany

Garching, Germany

Wolfgang A. Wall
Technical University of Munich

Garching, Germany

ABSTRACT
We present a performance comparison of highly tuned matrix-free
finite element kernels from the deal.II finite element library on
three contemporary computer architectures, an NVIDIA P100 GPU,
an Intel Knights Landing Xeon Phi, and two multi-core Intel CPUs.
The algorithms are based on fast integration on hexahedra using
sum factorization techniques. On Cartesian meshes with a relatively
high arithmetic intensity, the four architectures provide a surpris-
ingly similar computational throughput. On curved meshes, the
kernel is heavily memory bandwidth limited which reveals distinct
differences between the architectures: the P100 is twice as fast as
KNL, and almost four times as fast as the Haswell and Broadwell
CPUs, effectively leveraging the higher memory bandwidth and
the favorable shared memory programming model on the GPU.

CCS CONCEPTS
• Mathematics of computing → Mathematical software perfor-
mance;
ACM Reference Format:
Martin Kronbichler, Karl Ljungkvist, Momme Allalen, Martin Ohlerich,
Igor Pasichnyk, and Wolfgang A. Wall. 2017. Performance Optimization
of Matrix-free Finite-Element Algorithms within deal.II. In Proceedings of
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’17). ACM, New York, NY, USA, 3 pages.
https://doi.org/

1 INTRODUCTION
Matrix-free implementation of finite element operator evaluation, a
technique originally established in the spectral element community,
is the most competitive implementation for a wide range of appli-
cations relying on iterative solvers and quadratic or higher order
shape functions [5, 7]. Computing the integrals on the fly trades
a lower transfer of data from main memory for some additional
arithmetic operations as compared to conventional solvers using
sparse matrices. Since sparse matrix algebra is heavily memory
bandwidth bound with arithemtic intensities of 0.16 to 0.25 floating

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC’17, November 2017, Denver, Colorado USA
© 2017 Copyright held by the owner/author(s).

point operations per byte loaded from main memory, a matrix-
free alternative can be much faster also when performing more
computations. A competitive evaluation of integrals is provided by
sum factorization, a technique that decomposes the interpolation
and unit cell derivatives for tensor product shape functions and
quadrature into a series of 1D operations. This approach achieves
arithmetic intensities between 1 and 10 floating point operations
per byte loaded from main memory.

This work evaluates the performance of the general-purpose
kernels included in the open-source finite element library deal.II
[1] on contemporary hardware. It highlights the importance of
memory bandwidth on performance, which gives the P100 GPU an
edge over the competing architectures.

2 MATRIX-FREE ALGORITHM
In both explicit time integration schemes and a selection of iterative
solvers, the matrix-vector product is the primary determinant for
application performance. This includes state-of-the-art multigrid
solvers based on Jacobi and polynomial smoothers [7, 9].

Our matrix-free implementation considers a partial differential
equation in weak form as the evaluation of the differential operator
for a given input vector u in terms of the underlying integrals. In
the case of the Laplacian, we express the matrix-vector product
v = Au as

vi = (Au)i =

∫
Ω
∇φi · ∇u

hdx ,

where the assembled system matrix A is substituted by the under-
lying integrals with φi the i-th test function and uh the piecewise
polynomial representation associated with the input vector. In sum
factorization, the matrix A is neither built globally nor on the ele-
ments and only the integrals on the right hand side are evaluated
by numerical quadrature in a loop over all cells in the mesh. The
main arithmetic work is typically spent in the interpolation of the
unit cell derivatives ∇̂uh given the vector entries uj on the cell and
the multiplication and summation by ∇̂φi , see [5] and references
therein. Sum factorization utilizes the tensor product structure in
the shape functions and the quadrature formula by factoring out
common factors along the respective directions and can thus ap-
ply a series of one-dimensional interpolation kernels along each
coordinate direction, using ideas first presented in [10].

Sum factorization reduces the operational complexity fromO(kd )
operations per degree of freedom for k-th degree polynomials in
d dimensions for the naive evaluation or the final matrix stencil

https://doi.org/


SC’17, November 2017, Denver, Colorado USA M. Kronbichler et al.

1 2 3 4
0

0.5G

1.0G

1.5G

2.0G

2.5G

element degree

de
gr
ee
so

ff
re
ed
om

pe
rs

ec
on

d

3D Cartesian mesh

1 2 3 4
0

0.5G

1.0G

1.5G

2.0G

2.5G

element degree

de
gr
ee
so

ff
re
ed
om

pe
rs

ec
on

d

3D curved mesh

MF Pascal P100 GPU SpMV Pascal P100 GPU
MF Xeon Phi KNL 7210F 64C SpMV Xeon Phi KNL 7210F 64C
MF Xeon E5-2698 v4 40C SpMV Xeon E5-2698 v4 40C
MF Xeon E5-2697 v3 28C SpMV Xeon E5-2697 v3 28C

Figure 1: Performance of operator evaluation on P100, KNL,
and Xeon CPUs

to O(k) for all spatial dimensions. At degrees k > 3 in 3D, sum
factorization hence does not only reduce the memory transfer, but
also the number of arithmetic operations over matrices [5, 7].

Here, we evaluate the implementation of sum factorizationwithin
the deal.II finite element library [1] which has a particularly
well-tuned CPU version that runs close to hardware limits [5–7].
The CPU version uses SIMD vectorization by C++ wrapper classes
around intrinsics over several cells and gather/scatter operations
for the vector access which were rewritten for AVX-512. Despite the
high level of optimization, the kernels can be accessed in a generic
way that can also be leveraged in complex application codes [3, 4].
For the GPU version, we extended the algorithms presented in
[8, 9] with respect to shared memory parallelization and multiple
GPUs. For the latter, we implemented explicit data exchange rou-
tines similar to the MPI implementation for the CPU [5]. Within
a GPU, each elemental degree of freedom is assigned a separate
thread in addition to the parallel for loop over elements, using
atomics to avoid race conditions. This is opposed to the vectoriza-
tion model over elements on the CPU and parallelization with MPI
only. In our experiments, we found this to outperform thread-based
implementations that schedule the integration tasks according to
dependencies as a means to avoid race conditions [2].

3 PERFORMANCE COMPARISON
Fig. 1 displays the performance of the evaluation of the scalar
Laplacian for degrees 1 ≤ k ≤ 4 with k + 1 quadrature points
per space direction on a setup of one P100 (300W nominal power)
within a DGX-1 system, a 64-core Intel Knights Landing Xeon Phi

1 2 4 810−3

10−2

number of nodes

tim
e
pe
rm

at
-v
ec

[s
]

Q2 , P100

Q4 , P100

Q2 , Haswell

Q4 , Haswell

Q4 , KNL

Figure 2: Strong scaling experiment with 17.0 million de-
grees of freedom for Cartesian mesh on Xeon E5-2697 v3
nodes and P100 GPUs of DGX-1.

7210F (230W nominal power) and 2 × 20 and 2 × 14 Broadwell and
Haswell CPUs (270W nominal power each). For the measurements,
we evaluated the operator on a discretization with around 10million
vector entries (exceeding caches) and display the data as the number
of degrees of freedom processed per second. We record similar
performance of the matrix-free kernels on all architectures when
run on a Cartesian mesh with high arithmetic intensity around
3 to 8 [7]. In this case, only the input and output vector as well
as some index data need to be fetched from main memory. When
going to a mesh with high-order polynomial representation of a
curved geometry, the P100 is almost twice as fast as KNL for k ≥ 2
and almost 4× as fast as the CPUs. This is due to the much higher
achieved memory throughput, which is measured at 375–430GB/s
on P100, 190–225GB/s on KNL, and 95–125GB/s on the Broadwell
node with around 100 GFLOP/s on the CPUs and 400 GFLOP/s on
P100. When compared to sparse-matrix kernels (SpMV), the matrix-
free implementations offer speedups of an order of magnitude and
more, showing the superiority of matrix-free techniques.

Fig. 2 displays a strong scaling experiment with 17 million de-
grees of freedom over multiple GPUs against the performance
recorded on multiple nodes of the 28 core Haswell system. We
see that the GPU implementation saturates when going from four
to eight GPUs, which is due to missing parallelism and non-optimal
data exchange routines. The CPU implementation with MPI only,
on the other hand, does not only scale perfectly, but also sees a
superlinear speedup when going from two to four nodes, which
is due to a cache effect: for four and 8 nodes, the whole kernel fits
into the L3 cache and can run somewhat faster.

4 CONCLUSIONS AND OUTLOOK
Our experiments show the great capabilities of the P100 GPU.While
Intel CPUs and KNL can reach similar performance on compute-
heavy Cartesian meshes, the P100 is able to considerably outper-
form the former in case memory bandwidth is important, which
is a large share of matrix-free applications. Our results also show
that the multi-GPU setup does not optimally use the available re-
sources, shown by a breakdown in scaling below 3 milliseconds.
Future work will investigate the latency limits of multi-GPU setups
and implement better schemes for overlapping data transfer and
computation, similar to the CPU implementation [5].



Performance Optimization of Matrix-free Finite-Element Algorithms within deal.II SC’17, November 2017, Denver, Colorado USA

REFERENCES
[1] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier,

J.-P. Pelteret, B. Turcksin, and D. Wells. 2017. The deal.II Library, Version 8.5.
J. Numer. Math. 25, 3 (2017), 137–145. https://doi.org/10.1515/jnma-2017-0058

[2] Katharina Kormann and Martin Kronbichler. 2011. Parallel Finite Element Oper-
ator Application: Graph Partitioning and Coloring. In Proceedings of the 7th IEEE
International Conference on eScience. 332–339.

[3] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler. 2017. A high-order semi-
explicit discontinuous Galerkin solver for 3D incompressible flow with applica-
tion to DNS and LES of turbulent channel flow. J. Comput. Phys. in press (2017).
https://doi.org/10.1016/j.jcp.2017.07.039

[4] M. Kronbichler, A. Diagne, and H. Holmgren. 2016. A fast massively parallel
two-phase flow solver for the simulation of microfluidic chips. Int. J. High Perf.
Comput. Appl. in press (2016). https://doi.org/10.1177/1094342016671790

[5] M. Kronbichler and K. Kormann. 2012. A generic interface for parallel cell-
based finite element operator application. Comput. Fluids 63 (2012), 135–147.
https://doi.org/10.1016/j.compfluid.2012.04.012

[6] M. Kronbichler, K. Kormann, I. Pasichnyk, and M. Allalen. 2017. Fast Matrix-Free
Discontinuous Galerkin Kernels on Modern Computer Architectures. In ISC High
Performance 2017, LNCS 10266, J. M. Kunkel, R. Yokota, and D. Balaji, P. Keyes
(Eds.). Springer, Cham, 237–255. https://doi.org/10.1007/978-3-319-58667-013

[7] M. Kronbichler and W. A. Wall. 2016. A performance comparison of continuous
and discontinuous Galerkin methods with fast multigrid solvers. arXiv preprint
arXiv:1611.03029 (2016).

[8] K. Ljungkvist. 2017. Matrix-Free Finite-Element Computations on Graphics
Processors with Adaptively Refined Unstructured Meshes. In HPC ’17: Proceed-
ings of the 25th High Performance Computing Symposium. Society for Computer
Simulation International, San Diego, CA, USA.

[9] K. Ljungkvist and M. Kronbichler. 2017. Multigrid for Matrix-Free Finite Element
Computations on Graphics Processors. Technical Report 2017-006. Department of
Information Technology, Uppsala University.

[10] S. A. Orszag. 1980. Spectral Methods for Problems in Complex Geometries. J.
Comput. Phys. 37 (1980), 70–92.

https://doi.org/10.1515/jnma-2017-0058
https://doi.org/10.1016/j.jcp.2017.07.039
https://doi.org/10.1177/1094342016671790
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1007/978-3-319-58667-0 13

	Abstract
	1 Introduction
	2 Matrix-free algorithm
	3 Performance comparison
	4 Conclusions and outlook
	References

